|
Active brazing
Active brazing is the direct brazing of ceramic-ceramic and ceramic-metal joints. The active brazing alloys used for active brazing generally contain titanium which promotes wetting via a reaction at the brazing alloy / ceramic interface.
Active brazing alloys
Active brazing alloys are used for directly brazing ceramic-ceramic and ceramic-metal joints. In order to achieve good wetting of the ceramic materials, alloying elements are added to the active brazing alloys. These alloying elements form a reaction layer at the brazing alloy / ceramic interface, so creating the joint. Active brazing alloys can also be used for brazing diamond, sapphire, ruby and graphite. The active brazing alloys BrazeTec CB1, CB2, CB4, CB5 and CB6 are based on silver or silver-copper alloys and contain titanium in varying concentrations as an active element. A minimum brazing temperature of 850°C is required for active brazing in order to create a joint with the ceramic. Higher brazing temperatures improve the wetting behaviour. Pure argon or a vacuum are employed as atmospheres for the brazing work.
Alloy
Compounds of two or more metals are called alloys.
Aluminium and aluminium alloys
Aluminium and aluminium alloys are predominantly brazed with AlSi brazing alloys. The working temperature of these brazing alloy is ca. 600°C and hence only aluminium base materials with solidus temperatures above 630°C can be brazed with these brazing alloys. Pure aluminium and Al-Mn, Al-Mg and Al-Mg-Si alloys with less than 2% Mg and Si can be successfully brazed. For alloys with higher Mg and Si levels, brazing is not possible because the solidus temperature is too close to the working temperature of the brazing alloy. Higher Mg and Si contents also make wetting by solders more difficult.
Annealing
The majority of metals used industrially, e.g. copper, brass, steel for deep-drawing, are generally strengthened by cold-forming processes (pressing, drawing, rolling and suchlike). Annealing allows the soft and less strong starting state to be re-established. For other materials, steels which can be hardened or copper-beryllium, customised heat treatments can increase the hardness and strength. It is recommended to consider these two groups of materials separately for brazing.
Assembly gap
The assembly gap is the gap between the components to be brazed at room temperature.
B
Brazing
Brazing is a joining technique which uses alloys whose liquidus temperatures are above 450°C. Silver-copper-zinc alloys are generally used as brazing alloys. These may also additionally contain cadmium and tin.
Brazing alloy preforms
Brazing alloy comes in the following forms: wire sections, wire rings, shaped pieces of wire, discs, perforated discs, square or rectangular sheet sections and stamped sheets. In special cases, e.g. for surface brazing, shaped pieces of brazing alloy must be used for brazing as the rate of flow into narrow surface gaps is considerably smaller than into the free fillet.
Brazing atmosphere
The brazing atmosphere is the atmosphere during the brazing. Possible brazing atmospheres are air + flux, inert gases (e.g. argon, nitrogen, helium), reducing gases (e.g. hydrogen, carbon monoxide, dissociated ammonia) and a vacuum.
Brazing gap
The brazing gap is the gap between the components to be brazed at the brazing temperature. Due to thermal expansion of the base materials, the brazing gap may be different to the assembly gap.
Brazing time
The brazing time is the time from the start of the heating to complete solidification of the brazing alloy. In air this should be at maximum 5 minutes so that the oxide-dissolving effect of the flux is maintained.
Brazing/soldering
In accordance with DIN 8505, brazing/soldering is a thermal process for securely joining and coating materials, whereby a liquid phase is formed by melting a solder / brazing alloy or by diffusion at the interfaces. In contrast to welding, the solidus temperature of the base material is not reached.
Burner
Burners are instruments for heating components in atmospheres. There are burners for different gases combinations: acetylene-oxygen; acetylene - drawn-in air; propane - oxygen; propane - drawn-in air; natural gas - oxygen and natural gas - compressed air. There are also hydrogen burners. The selected gas combination and size of the burner head determine the time required for brazing.
C
Cadmium-containing silver brazing alloys
Silver brazing alloys have low working temperatures and very good wetting behaviour. They are however only suitable for brazed joints used at operating temperatures up to 150°C. These brazing alloys are not recommended by us because of their cadmium content and the associated health problems. Nevertheless, cadmium-containing silver brazing alloys are still used in many sectors of industry.
Cadmium-free silver brazing alloys
Due to health problems associated with cadmium-containing silver brazing alloys, we recommend the use of cadmium-free silver brazing alloys. Compared to cadmium-containing brazing alloys with the same silver content, these have higher working temperatures. They can however be used at somewhat higher operating temperatures (ca. 200°C).
Capillary effect
If the gap between the components to be brazed has a width of maximum 0.2 mm at the brazing temperature, the liquid brazing alloy is drawn into the gap. This so-called capillary effect allows the brazing alloy to penetrate into deep gaps or even to rise into vertical gaps.
Capillary filling pressure
The capillary filling pressure is the pressure which the molten brazing alloy exerts against gravity in the brazing gap. This pressure is dependent on the width of the brazing gap and the geometry. In general, the capillary filling pressure increases the more narrow the brazing gap becomes.
Copper bit
Copper bits are only used for soldering. They consist of a metal bit (copper) which is heated for example electrically or using a burner. Via contact with the component, the heat and also molten solder is transferred to the component and a joint is created.
Copper-bit soldering
Copper-bit soldering involves heating the point to be soldered and melting the solder with a manual or machine-powered copper bit. The heat capacity and shape of the bit must be adapted to the joint to be soldered. With the aid of flux, both components are brought up to working temperature with the solder, prior to starting the actual soldering procedure.
D
De-wetting
In brazing technology, de-wetting is the shrinking of molten brazing alloy previously spread out over the surface.
Diffusion
In general, the term diffusion refers to a macroscopic mass transport caused by movement of individual atoms along paths which are larger than the interatomic distance.
Diffusion zones
In a successful brazed joint, the brazing alloy alloys to a thin layer of the pure metal surface. The movement of metal atoms necessary for this is called diffusion. Correspondingly, the resultant joint-zones are also called diffusion zones. Their existence and size determine the strength of the brazed joint.
E
Effective temperature range
Fluxes start to become effective above a certain temperature; above a certain temperature they lose their effect. The flux is active within this effective temperature range and allows or promotes wetting of the workpiece surface with liquid brazing alloy.
Eutectic alloys
Just like pure metals, eutectic alloys have a melting point rather than a melting point range. The best known example in brazing technology of a eutectic alloy is BrazeTec 7200, comprising 72% silver and 28% copper and having a melting point of 780°C.
F
Flame brazing
A large number of brazed joints are formed using flame brazing (burner brazing). Various fuel gas / oxygen mixtures are used for this. Propane / drawn-in air and acetylene / oxygen combinations are commonly used. In flame brazing, flux must be used for all base material / brazing alloy combinations. The only exceptions are the phosphorus-containing copper brazing alloys which can be used without flux for copper-copper joints.
Flammable gases
Pipes which are used for transporting gases for public and private gas utility companies in Germany must be brazed. In accordance with the DVGW (Deutscher Verband des Gas- und Wasserfaches e.V.) working sheet GW2, silver brazing alloys BrazeTec 4576, 3476 and 4404 and also phosphorus-containing brazing alloys BrazeTec S 94 and S 2 are permitted. If it is possible for sulphur-containing media (e.g. engine oils, air from stalls, etc.) to come into contact with the brazed joints, phosphorus-containing brazing alloys cannot be employed. In accordance with ISO 9539 (Version 1988) and Trac (Version 1999), acetylene pipes must be brazed with alloys which do not contain more than 46% Ag and not more than 36% Cu (BrazeTec 4576 or 4404). |
|